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Introduction
● Two common types of lossy audio codecs

– Speech/communication (G.72x, GSM, AMR, Speex)
● Low delay (15-30 ms)
● Low sampling rate (8 kHz to 16 kHz): limited fidelity
● No support for music

– General purpose (MP3, AAC, Vorbis)
● High delay (> 100 ms)
● High sampling rates (44.1 kHz or higher)
● "CD-quality" music

– We want both: high fidelity with very low delay
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Introduction
● Low delay is critical to live interaction

– Prevents collisions during conversation

– Reduce need for echo cancellation
● Good for small, embedded devices without much CPU

– Higher sense of presence

– Allows synchronization for live music
● Need less than 25 ms total delay to synchronize (Carôt 2006)
● Equivalent to sitting 8 m apart (farther requires a conductor)

● Lower delay in the codec increases range
– 1 ms = 200 km in fiber

High delay
(~250 ms)

Low delay
(~15 ms)
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Introduction
● No entrenched standard in this space

– G.722.1C (ITU-T) [40 ms delay, up to 32 kHz]

– AAC-LD (MPEG) [20-50 ms delay, up to 48 kHz]

– ULD (Fraunhofer) [< 10 ms delay, up to 48 kHz]

● CELT is already ahead of the competition
– Delay: Configurable, 1.3 ms to 24 ms, ~8 ms typical

– Quality (at equivalent rates): Much better than G.722.1C, as 
good as or better than AAC-LD, better than ULD

– Flexibility: 24 kbps to 160+ kbps, 32 kHz to 96 kHz, 
configurable delay, low-complexity mode

– Freedom: Open source (BSD), no patents
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CELT: "Constrained Energy 
Lapped Transform"

● Transform codec (MDCT, like MP3, Vorbis)
– Short windows (~8 ms) → poor frequency resolution

● Explicitly code energy of each band of the signal
– Coarse shape of sound preserved no matter what

● Code remaining details using vector quantization
● Also uses pitch prediction with a time offset

– Similar to linear prediction used by speech codecs

– Helps compensate for poor frequency resolution
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"Lapped Transform"
Time-Frequency Duality

● Any signal can be represented as a weighted 
sum of cosine curves with different frequencies

● The Discrete Cosine Transform (DCT) 
computes the weights for each frequency

220 Hz (A3)

440 Hz (A4)

1245 Hz (D#5)



The Xiph.Org Foundation 10 

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=48000
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=4096 (Maximum Vorbis block size)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=1024 (Typical Vorbis block size)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (harder to compress)
N=256 (CELT can use 64...512)
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (unstable over time)
N=256 (CELT can use 64...512)

Frame 2...
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"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to 
a finite number of frequencies
– As the transform size gets smaller, energy "leaks" 

into nearby frequencies (unstable over time)
N=256 (CELT can use 64...512)

Frame 3...
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"Lapped Transform"
Modified DCT

● The normal DCT causes coding artifacts (sharp 
discontinuities) between blocks, easily audible

● The "Modified" DCT (MDCT) uses a decaying 
window to overlap multiple blocks
– Same transform 

used in MP3, 
Vorbis, AAC, etc.

– But with much 
smaller blocks,
less overlap
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"Constrained Energy"
Critical Bands

● The human ear can hear about 25 distinct 
"critical bands" in the frequency domain
– Psychoacoustic masking within a band is much 

stronger than between bands

Threshold of detection in the 
presence of masker at 1kHz 
with a bandwidth of 1 critical 
band and various levels.

Image blatantly stolen from 
http://www.tonmeister.ca/main/textbook/node331.html

http://www.tonmeister.ca/main/textbook/node331.html
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"Constrained Energy"
Critical Bands

Bark

CELT

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Bark Scale vs. CELT @ 48kHz, Frame Size=256

Frequency (Hz)

● Group MDCT coefficients into bands 
approximating the critical bands (Bark scale)
– We limit bands to contain at least 3 coefficients to 

minimize per-band overhead

– Insufficient frequency resolution for all the bands

– But we spend most of our bits on LFs anyway
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"Constrained Energy"
Coding Band Energy

● Most important psychoacoustic lesson learned 
from Vorbis:

Preserve the energy in each band
● Vorbis does this implicitly with its "floor curve"
● CELT codes the energy explicitly

– Coarse energy (6 dB resolution), predicted from 
previous frame and from previous band

● Prediction saves 28 bits/frame, 5.6 kbps with 5 ms frames

– Fine energy, improves resolution where we have 
available bits, not predicted
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"Constrained Energy"
Coding Band Energy

● CELT (green) vs 
original (red)
– Notice the 

quantization 
between 8.5 kHz 
and 12 kHz

– Speech is 
intelligible using 
coarse energy 
alone (~9 kbps
for 5.3 ms frame 
sizes)
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Coding Band Shape
● After normalizing, each band is represented by 

an N-dimensional unit vector
– Point on an N-dimensional sphere

– Describes "shape" of energy within the band

● Code this shape using two pieces:
– An adaptive codebook using previously decoded 

signal content to predict the current frame

– A fixed codebook to handle the part of the signal 
that can't be predicted (the "innovation")

● Latter uses vector quantization
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Coding Band Shape
Vector Quantization

● Approximates a multidimensional distribution 
with a finite number of codewords (vectors)
Scalar Quantization (2 bits/dim) Vector Quantization (2 bits/dim)

RMS error = 0.89 RMS error = 0.71 
(20% better)
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Coding Band Shape
Vector Quantization

● Easily scales to less than 1 bit per dimension 
(very important for HF bands: 50-200 dims)
Scalar Quantization (0.5 bits/dim) Vector Quantization (0.5 bits/dim)

RMS error = 2.93 RMS error = 1.63 
(44% better)
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Coding Band Shape
Algebraic Vector Quantization

● CELT requires a lot of codebooks
– Every band can have a different # of dimensions

– Exact number of bits available for each band varies 
from packet to packet

● CELT requires large codebooks
– Exponential in # of dimensions: 50 dims at 0.6 bits/

dim. requires over a billion codebook entries

– We couldn't even store one codebook that large

– And even if we could, it'd take forever to search

● But we have uniformly distributed unit vectors
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● Use a regularly structured, algebraic codebook: 
Pyramid Vector Quantization (Fischer, 1986)
– We want evenly distributed points on a sphere

● Don't know how to do that for arbitrary dimension

– Use evenly distributed points on a pyramid instead

● For N dimensional vector, allocate K "pulses"
● Codebook consists vectors with integer 

coordinates whose magnitudes sum to K

Coding Band Shape
Algebraic Vector Quantization
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Coding Band Shape
Pyramid Vector Quantization

● PVQ codebook has a fast enumeration algorithm
– Converts between vector and integer codebook index

– O(N+K) (lookup table, muls) or simpler O(NK) (adds)

– Latter great for embedded processors, often faster

● Fast codebook search algorithm: O(N·min(N,K))

– Divide by L
1
 norm, round down: at least K-N pulses

– Place remaining pulses (at most N) one at a time

● Codebooks larger than 32 bits
– Split the vector in half and code each half separately 
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Coding Band Shape
Pitch Prediction

● Short block sizes → poor frequency resolution
– Speech/music have periodic, stationary content

– Can't represent the period accurately via short MDCT

● Pitch prediction compensates for poor resolution
– Search the past 1024 decoded samples in the time 

domain, code the offset of the best match
● Resolution equal to the sampling rate
● Range (48 kHz, FS=256): 

– Apply an MDCT to convert to the freq. domain

– Confine prediction to bands below 8kHz

48000
1024

 to 
48000

384
=46.875 Hz to 125Hz
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Coding Band Shape
Mixing

● Scale each band of pitch MDCT to unit norm: p

● Compute a pitch gain, g
a

[0...1] for each band∊

● Mix with the fixed codebook vector y via

● Output must have unit norm, so g
f
 is completely 

determined:
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Coding Band Shape
Adaptive vs. Fixed Codebooks

● Tried stronger adaptation, but required more CPU 
for no perceptible gain

5.25 bits 6.04 bits 7.19 bits 8.01 bits

After applying pitch prediction

Before applying pitch prediction
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Coding Band Shape
Mixing

● Ideal g
a
 chosen so that 

residual r = x-g
a
p 

orthogonal to p

● Quantizing g
a
 means 

orthogonality not exact 
– Used to use basic VQ to 

code all g
a
 values at once

– Now use 1 bit per band,
g

a
is either 0 or 0.9
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Rate Allocation
● Only CBR supported

– VBR requires buffering, and buffering means delay

– User specifies the exact number of bytes to encode 
each packet into

– Can change from packet to packet, to adapt to 
channel statistics

● Only a few things are variable-sized
– Coarse energy (entropy coded)

– Pitch parameters (can be omitted if not useful)

– PVQ codewords over 32 bits (rare)
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Rate Allocation
● Each band's share of available bits is fixed

– CELT transmits no side information for allocation

– Equivalent to 
modeling within-
band masking

● "Signal-to-mask" 
ratio for each band 
is roughly constant

– Ignores inter-band 
masking and tone 
vs. noise effects
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Psychoacoustic Tricks
● Avoiding "birdie" artifacts

– K may be small, giving a sparse spectrum > 8 kHz

– Use spectral folding, a scaled copy of lower-
frequency MDCT coefficients, in place of p

● Acts as a cheap source of time-localized noise
● Mix using a small value for g

a
 (a function of K)

● Avoiding "pre-echo" artifacts
– When a strong transient is detected, split the frame 

and do a smaller MDCT on each piece

– Interleave the results and continue as normal
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Block Diagram

Disabled in low-complexity mode



The Xiph.Org Foundation 37 

Future Work
● Freeze bitstream format

– No side information for allocation means many 
details of the encoding become normative

● Dynamic rate allocation
– Hard to do psychoacoustic analysis without delay

– Almost any per-band overhead uses a lot of bits

● Improve stereo coupling
– Currently using PVQ to handle phase vs. magnitude

● Improve pitch prediction
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CELT vs. The Competition
● Results from Dr. Christian Hoene for ITU-T 

Workshop last September

Bitrate (bps)
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CELT vs. The Competition
● Results from Dr. Christian Hoene for ITU-T 

Workshop last September
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Quality vs. Delay
(v0.5, no pitch)



The Xiph.Org Foundation 42 

Listening Tests – 48 kbps
(v0.3.2, with pitch)
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Listening Tests – 64 kbps
(v0.3.2, with pitch)
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Listening Tests – LC Mode
(v0.5, no pitch)
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Packet Loss
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Bit Errors vs. Position
● Wireless transmission means individual bits can 

be corrupted without causing packet loss
– Quality loss due to 

bit errors varies 
with location in a 
packet

– Trellis Coded 
Modulation (TCM) 
can give better 
protection to 
earlier bits
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Example
● Original file (706 kbps)
● Scalar Quantization (227 kbps, SNR=20.9 dB)

– 5.15 bits per sample

● Encoded with CELT (64.8 kbps, SNR=20.9 dB)
– 1.47 bits per sample (Frame Size=256)

● Scalar Quantizaion Residual (amplified 2×)
● CELT Residual (amplified 2×)

– Throw away information only where it's masked by 
something else in the signal
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libcelt
● Extremely light-weight fixed-point impl.

● Also has a floating-point implementation
– Requires twice the RAM for CELT-LC, an extra 0.5 

kB for full CELT.

– 0.9% of one core on a 3 GHz Core2

Full CELT LC mode
Enc/Dec State (each) 4.5 kB      0.5 kB  
Required Stack 11-13 kB      7 kB  
Table Data (ROM) 5.5 kB      5.5 kB  
CPU (TI-C55x DSP) 60 MIPS (enc)+

30 MIPS (dec)
~30 MIPS (enc)+
~15 MIPS (dec)
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libcelt API
CELTMode    *celt_mode_create(celt_int32_t Fs,int channels,int frame_size,
                              int *error);
int          celt_mode_info(const CELTMode *mode,int request,
                            celt_int32_t *value);

● CELT_GET_FRAME_SIZE, CELT_GET_LOOKAHEAD,     
  CELT_GET_NB_CHANNELS, CELT_GET_BITSTREAM_VERSION

CELTEncoder *celt_encoder_create(const CELTMode *mode);
int          celt_encoder_ctl(CELTEncoder *st,int request,...);

● CELT_SET_COMPLEXITY_REQUEST, CELT_SET_COMPLEXITY(x) /*0-10 (int)*/
● CELT_SET_LTP_REQUEST,        CELT_SET_LTP(x)      /*0 or 1 (int)*/

int          celt_encode(CELTEncoder *st,const celt_int16_t *pcm,
                         celt_int16_t *optional_synthesis,
                         unsigned char *compressedBytes,int nbCompressedBytes);
void         celt_encoder_destroy(CELTEncoder *st);

CELTDecoder *celt_decoder_create(const CELTMode *mode);
int          celt_decode(CELTDecoder *st,unsigned char *compressedBytes,
                         int nbCompressedBytes,celt_int16_t *pcm);
void         celt_decoder_destroy(CELTDecoder *st);

void         celt_mode_destroy(CELTMode *mode);
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Hello Encoder
#include <stdio.h>
#include <stdlib.h>
#include <celt/celt.h>

int main(int argc,const char *argv[]){
  celt_int16_t   in[256];
  unsigned char  out[43];
  CELTMode      *mode;
  CELTEncoder   *enc;
  mode=celt_mode_create(48000,1,256,NULL);
  if(mode==NULL)return EXIT_FAILURE;
  enc=celt_encoder_create(mode);
  if(enc==NULL)return EXIT_FAILURE;
  while(fread(in,sizeof(celt_int16_t),256,stdin)>=256){
    if(celt_encode(enc,in,NULL,out,43)<0)return EXIT_FAILURE;
    fwrite(out,sizeof(unsigned char),43,stdout);
  }
  celt_encoder_destroy(enc);
  celt_mode_destroy(mode);
  return EXIT_SUCCESS;
}
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Hello Decoder
#include <stdio.h>
#include <stdlib.h>
#include <celt/celt.h>

int main(int argc,const char *argv[]){
  unsigned char  in[43];
  celt_int16_t   out[256];
  CELTMode      *mode;
  CELTDecoder   *dec;
  celt_int32_t   skip;
  mode=celt_mode_create(48000,1,256,NULL);
  if(mode==NULL)return EXIT_FAILURE;
  celt_mode_info(mode,CELT_GET_LOOKAHEAD,&skip);
  dec=celt_decoder_create(mode);
  if(dec==NULL)return EXIT_FAILURE;
  while(fread(in,sizeof(unsigned char),43,stdin)>=43){
    if(celt_decode(dec,in,43,out)<0)return EXIT_FAILURE;
    fwrite(out+skip,sizeof(celt_int16_t),256-skip,stdout);
    skip=0;
  }
  celt_decoder_destroy(dec);
  celt_mode_destroy(mode);
  return EXIT_SUCCESS;
}
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Low-latency Linux Audio
● Audio hardware often doesn't work with small 

buffer sizes
– 256 samples (5.3 ms) sometimes fails

– Even 512 samples (10.6 ms) occasionally fails

– I don't know how often this is a Linux driver problem 
vs. a hardware problem, but...

● There's no easy way to tell if it will work other 
than to try it and fail
– And this is Linux's problem
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Low-latency Linux Audio
● Even if small buffers work, scheduling delays 

can prevent us from filling them on time
– Loading/unloading drivers still causes huge delays, even 

with RT patches
● Hot-plugging some USB devices virtually guarantees 

deadline miss

● Network latency is also critical
– Some drivers will attempt to throttle interrupts when 

sending hundreds of packets a second
● This only makes latency worse

– Some wi-fi drivers have weird spikes over 100ms 
(OpenMoko FreeRunner)
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Low-latency Linux Audio
● Library support also important

– On x86-64, glibc's exp() takes substantially longer 
than average for some arguments

● Turns out it uses a generic C implementation
● Includes its own custom multi-precision arithmetic library 

to compute hundreds of digits of intermediate results if 
necessary so that the rounding is exactly right

– expf() is even slower than exp()
● Changes exception handling mode of FPU, even if it's 

already set correctly, then changes it "back"

● Now imagine all the dependencies of a video-
conferencing app...
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Conclusion
● CELT brings CD-quality sound to VoIP-style 

low-delay applications
– Better than MP3 and <10 ms delay

● Better than emerging proprietary standards
– As good or better than AAC-LD with half the delay

– Better quality and error robustness than ULD

– Supports wider range of bitrates, sampling rates



The Xiph.Org Foundation 61 

Early Adopters
● CELT is already being used by a number of projects

– Soundjack (Alexander Carôt)
http://virtualsoundexchange.net/node/21

– NexGenVoIP (Dr. Christian Hoene)
http://www.nexgenvoip.org/

– FreeSWITCH (Anthony Minessale II, Brian K. West)
http://www.freeswitch.org/ (source code available)

– jack-audio-connection-kit (netjack) (Torben Hohn)
http://jackaudio.org/ (source code available)

– Radio CHNC (Jonathan Thibault, http://navigue.com) 
http://www.radiochnc.com/

http://virtualsoundexchange.net/node/21
http://www.nexgenvoip.org/
http://www.freeswitch.org/
http://jackaudio.org/
http://navigue.com/
http://www.radiochnc.com/
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Questions?
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