
The Xiph.Org Foundation

CELT: A Low-latency,
High-quality Audio Codec

Dr. Jean-Marc Valin,
Gregory Maxwell, and
Dr. Timothy B. Terriberry

The Xiph.Org Foundation 2

Outline
● Introduction and Motivation
● CELT Design
● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 3

Introduction
● Two common types of lossy audio codecs

– Speech/communication (G.72x, GSM, AMR, Speex)
● Low delay (15-30 ms)
● Low sampling rate (8 kHz to 16 kHz): limited fidelity
● No support for music

– General purpose (MP3, AAC, Vorbis)
● High delay (> 100 ms)
● High sampling rates (44.1 kHz or higher)
● "CD-quality" music

– We want both: high fidelity with very low delay

The Xiph.Org Foundation 4

Introduction
● Low delay is critical to live interaction

– Prevents collisions during conversation

– Reduce need for echo cancellation
● Good for small, embedded devices without much CPU

– Higher sense of presence

– Allows synchronization for live music
● Need less than 25 ms total delay to synchronize (Carôt 2006)
● Equivalent to sitting 8 m apart (farther requires a conductor)

● Lower delay in the codec increases range
– 1 ms = 200 km in fiber

High delay
(~250 ms)

Low delay
(~15 ms)

The Xiph.Org Foundation 5

Introduction
● No entrenched standard in this space

– G.722.1C (ITU-T) [40 ms delay, up to 32 kHz]

– AAC-LD (MPEG) [20-50 ms delay, up to 48 kHz]

– ULD (Fraunhofer) [< 10 ms delay, up to 48 kHz]

● CELT is already ahead of the competition
– Delay: Configurable, 1.3 ms to 24 ms, ~8 ms typical

– Quality (at equivalent rates): Much better than G.722.1C, as
good as or better than AAC-LD, better than ULD

– Flexibility: 24 kbps to 160+ kbps, 32 kHz to 96 kHz,
configurable delay, low-complexity mode

– Freedom: Open source (BSD), no patents

The Xiph.Org Foundation 6

Outline
● Introduction
● CELT Design
● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 7

CELT: "Constrained Energy
Lapped Transform"

● Transform codec (MDCT, like MP3, Vorbis)
– Short windows (~8 ms) → poor frequency resolution

● Explicitly code energy of each band of the signal
– Coarse shape of sound preserved no matter what

● Code remaining details using vector quantization
● Also uses pitch prediction with a time offset

– Similar to linear prediction used by speech codecs

– Helps compensate for poor frequency resolution

The Xiph.Org Foundation 8

Outline
● Introduction
● CELT Design

– "Lapped Transform"

– "Constrained Energy"

– Coding Band Shape

– Performance Tests

● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 9

"Lapped Transform"
Time-Frequency Duality

● Any signal can be represented as a weighted
sum of cosine curves with different frequencies

● The Discrete Cosine Transform (DCT)
computes the weights for each frequency

220 Hz (A3)

440 Hz (A4)

1245 Hz (D#5)

The Xiph.Org Foundation 10

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (harder to compress)
N=48000

The Xiph.Org Foundation 11

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (harder to compress)
N=4096 (Maximum Vorbis block size)

The Xiph.Org Foundation 12

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (harder to compress)
N=1024 (Typical Vorbis block size)

The Xiph.Org Foundation 13

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (harder to compress)
N=256 (CELT can use 64...512)

The Xiph.Org Foundation 14

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (unstable over time)
N=256 (CELT can use 64...512)

Frame 2...

The Xiph.Org Foundation 15

"Lapped Transform"
Discrete Cosine Transform

● The "Discrete" in DCT means we're restricted to
a finite number of frequencies
– As the transform size gets smaller, energy "leaks"

into nearby frequencies (unstable over time)
N=256 (CELT can use 64...512)

Frame 3...

The Xiph.Org Foundation 16

"Lapped Transform"
Modified DCT

● The normal DCT causes coding artifacts (sharp
discontinuities) between blocks, easily audible

● The "Modified" DCT (MDCT) uses a decaying
window to overlap multiple blocks
– Same transform

used in MP3,
Vorbis, AAC, etc.

– But with much
smaller blocks,
less overlap

The Xiph.Org Foundation 17

Outline
● Introduction
● CELT Design

– "Lapped Transform"

– "Constrained Energy"

– Coding Band Shape

– Performance Tests

● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 18

"Constrained Energy"
Critical Bands

● The human ear can hear about 25 distinct
"critical bands" in the frequency domain
– Psychoacoustic masking within a band is much

stronger than between bands

Threshold of detection in the
presence of masker at 1kHz
with a bandwidth of 1 critical
band and various levels.

Image blatantly stolen from
http://www.tonmeister.ca/main/textbook/node331.html

http://www.tonmeister.ca/main/textbook/node331.html

The Xiph.Org Foundation 19

"Constrained Energy"
Critical Bands

Bark

CELT

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Bark Scale vs. CELT @ 48kHz, Frame Size=256

Frequency (Hz)

● Group MDCT coefficients into bands
approximating the critical bands (Bark scale)
– We limit bands to contain at least 3 coefficients to

minimize per-band overhead

– Insufficient frequency resolution for all the bands

– But we spend most of our bits on LFs anyway

The Xiph.Org Foundation 20

"Constrained Energy"
Coding Band Energy

● Most important psychoacoustic lesson learned
from Vorbis:

Preserve the energy in each band
● Vorbis does this implicitly with its "floor curve"
● CELT codes the energy explicitly

– Coarse energy (6 dB resolution), predicted from
previous frame and from previous band

● Prediction saves 28 bits/frame, 5.6 kbps with 5 ms frames

– Fine energy, improves resolution where we have
available bits, not predicted

The Xiph.Org Foundation 21

"Constrained Energy"
Coding Band Energy

● CELT (green) vs
original (red)
– Notice the

quantization
between 8.5 kHz
and 12 kHz

– Speech is
intelligible using
coarse energy
alone (~9 kbps
for 5.3 ms frame
sizes)

The Xiph.Org Foundation 22

Outline
● Introduction
● CELT Design

– "Lapped Transform"

– "Constrained Energy"

– Coding Band Shape

– Performance Results

● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 23

Coding Band Shape
● After normalizing, each band is represented by

an N-dimensional unit vector
– Point on an N-dimensional sphere

– Describes "shape" of energy within the band

● Code this shape using two pieces:
– An adaptive codebook using previously decoded

signal content to predict the current frame

– A fixed codebook to handle the part of the signal
that can't be predicted (the "innovation")

● Latter uses vector quantization

The Xiph.Org Foundation 24

Coding Band Shape
Vector Quantization

● Approximates a multidimensional distribution
with a finite number of codewords (vectors)
Scalar Quantization (2 bits/dim) Vector Quantization (2 bits/dim)

RMS error = 0.89 RMS error = 0.71
(20% better)

The Xiph.Org Foundation 25

Coding Band Shape
Vector Quantization

● Easily scales to less than 1 bit per dimension
(very important for HF bands: 50-200 dims)
Scalar Quantization (0.5 bits/dim) Vector Quantization (0.5 bits/dim)

RMS error = 2.93 RMS error = 1.63
(44% better)

The Xiph.Org Foundation 26

Coding Band Shape
Algebraic Vector Quantization

● CELT requires a lot of codebooks
– Every band can have a different # of dimensions

– Exact number of bits available for each band varies
from packet to packet

● CELT requires large codebooks
– Exponential in # of dimensions: 50 dims at 0.6 bits/

dim. requires over a billion codebook entries

– We couldn't even store one codebook that large

– And even if we could, it'd take forever to search

● But we have uniformly distributed unit vectors

The Xiph.Org Foundation 27

● Use a regularly structured, algebraic codebook:
Pyramid Vector Quantization (Fischer, 1986)
– We want evenly distributed points on a sphere

● Don't know how to do that for arbitrary dimension

– Use evenly distributed points on a pyramid instead

● For N dimensional vector, allocate K "pulses"
● Codebook consists vectors with integer

coordinates whose magnitudes sum to K

Coding Band Shape
Algebraic Vector Quantization

The Xiph.Org Foundation 28

Coding Band Shape
Pyramid Vector Quantization

● PVQ codebook has a fast enumeration algorithm
– Converts between vector and integer codebook index

– O(N+K) (lookup table, muls) or simpler O(NK) (adds)

– Latter great for embedded processors, often faster

● Fast codebook search algorithm: O(N·min(N,K))

– Divide by L
1
 norm, round down: at least K-N pulses

– Place remaining pulses (at most N) one at a time

● Codebooks larger than 32 bits
– Split the vector in half and code each half separately

The Xiph.Org Foundation 29

Coding Band Shape
Pitch Prediction

● Short block sizes → poor frequency resolution
– Speech/music have periodic, stationary content

– Can't represent the period accurately via short MDCT

● Pitch prediction compensates for poor resolution
– Search the past 1024 decoded samples in the time

domain, code the offset of the best match
● Resolution equal to the sampling rate
● Range (48 kHz, FS=256):

– Apply an MDCT to convert to the freq. domain

– Confine prediction to bands below 8kHz

48000
1024

 to
48000

384
=46.875 Hz to 125Hz

The Xiph.Org Foundation 30

Coding Band Shape
Mixing

● Scale each band of pitch MDCT to unit norm: p

● Compute a pitch gain, g
a

[0...1] for each band∊

● Mix with the fixed codebook vector y via

● Output must have unit norm, so g
f
 is completely

determined:

The Xiph.Org Foundation 31

Coding Band Shape
Adaptive vs. Fixed Codebooks

● Tried stronger adaptation, but required more CPU
for no perceptible gain

5.25 bits 6.04 bits 7.19 bits 8.01 bits

After applying pitch prediction

Before applying pitch prediction

The Xiph.Org Foundation 32

Coding Band Shape
Mixing

● Ideal g
a
 chosen so that

residual r = x-g
a
p

orthogonal to p

● Quantizing g
a
 means

orthogonality not exact
– Used to use basic VQ to

code all g
a
 values at once

– Now use 1 bit per band,
g

a
is either 0 or 0.9

The Xiph.Org Foundation 33

Rate Allocation
● Only CBR supported

– VBR requires buffering, and buffering means delay

– User specifies the exact number of bytes to encode
each packet into

– Can change from packet to packet, to adapt to
channel statistics

● Only a few things are variable-sized
– Coarse energy (entropy coded)

– Pitch parameters (can be omitted if not useful)

– PVQ codewords over 32 bits (rare)

The Xiph.Org Foundation 34

Rate Allocation
● Each band's share of available bits is fixed

– CELT transmits no side information for allocation

– Equivalent to
modeling within-
band masking

● "Signal-to-mask"
ratio for each band
is roughly constant

– Ignores inter-band
masking and tone
vs. noise effects

The Xiph.Org Foundation 35

Psychoacoustic Tricks
● Avoiding "birdie" artifacts

– K may be small, giving a sparse spectrum > 8 kHz

– Use spectral folding, a scaled copy of lower-
frequency MDCT coefficients, in place of p

● Acts as a cheap source of time-localized noise
● Mix using a small value for g

a
 (a function of K)

● Avoiding "pre-echo" artifacts
– When a strong transient is detected, split the frame

and do a smaller MDCT on each piece

– Interleave the results and continue as normal

The Xiph.Org Foundation 36

Block Diagram

Disabled in low-complexity mode

The Xiph.Org Foundation 37

Future Work
● Freeze bitstream format

– No side information for allocation means many
details of the encoding become normative

● Dynamic rate allocation
– Hard to do psychoacoustic analysis without delay

– Almost any per-band overhead uses a lot of bits

● Improve stereo coupling
– Currently using PVQ to handle phase vs. magnitude

● Improve pitch prediction

The Xiph.Org Foundation 38

Outline
● Introduction
● CELT Design

– "Lapped Transform"

– "Constrained Energy"

– Coding Band Shape

– Performance Results

● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 39

CELT vs. The Competition
● Results from Dr. Christian Hoene for ITU-T

Workshop last September

Bitrate (bps)

P
E

A
Q

 S
co

re
 (

O
D

G
)

The Xiph.Org Foundation 40

CELT vs. The Competition
● Results from Dr. Christian Hoene for ITU-T

Workshop last September

P
E

A
Q

 S
co

re
 (

O
D

G
)

Bitrate

The Xiph.Org Foundation 41

Quality vs. Delay
(v0.5, no pitch)

The Xiph.Org Foundation 42

Listening Tests – 48 kbps
(v0.3.2, with pitch)

The Xiph.Org Foundation 43

Listening Tests – 64 kbps
(v0.3.2, with pitch)

The Xiph.Org Foundation 44

Listening Tests – LC Mode
(v0.5, no pitch)

The Xiph.Org Foundation 45

Packet Loss

The Xiph.Org Foundation 46

Bit Errors vs. Position
● Wireless transmission means individual bits can

be corrupted without causing packet loss
– Quality loss due to

bit errors varies
with location in a
packet

– Trellis Coded
Modulation (TCM)
can give better
protection to
earlier bits

The Xiph.Org Foundation 47

Example
● Original file (706 kbps)
● Scalar Quantization (227 kbps, SNR=20.9 dB)

– 5.15 bits per sample

● Encoded with CELT (64.8 kbps, SNR=20.9 dB)
– 1.47 bits per sample (Frame Size=256)

● Scalar Quantizaion Residual (amplified 2×)
● CELT Residual (amplified 2×)

– Throw away information only where it's masked by
something else in the signal

The Xiph.Org Foundation 48

Outline
● Introduction
● CELT Design
● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 49

libcelt
● Extremely light-weight fixed-point impl.

● Also has a floating-point implementation
– Requires twice the RAM for CELT-LC, an extra 0.5

kB for full CELT.

– 0.9% of one core on a 3 GHz Core2

Full CELT LC mode
Enc/Dec State (each) 4.5 kB 0.5 kB
Required Stack 11-13 kB 7 kB
Table Data (ROM) 5.5 kB 5.5 kB
CPU (TI-C55x DSP) 60 MIPS (enc)+

30 MIPS (dec)
~30 MIPS (enc)+
~15 MIPS (dec)

The Xiph.Org Foundation 50

Outline
● Introduction
● CELT Design
● libcelt

– The API

– Low-latency Linux Audio

● Demo
● Conclusion

The Xiph.Org Foundation 51

libcelt API
CELTMode *celt_mode_create(celt_int32_t Fs,int channels,int frame_size,
 int *error);
int celt_mode_info(const CELTMode *mode,int request,
 celt_int32_t *value);

● CELT_GET_FRAME_SIZE, CELT_GET_LOOKAHEAD,
 CELT_GET_NB_CHANNELS, CELT_GET_BITSTREAM_VERSION

CELTEncoder *celt_encoder_create(const CELTMode *mode);
int celt_encoder_ctl(CELTEncoder *st,int request,...);

● CELT_SET_COMPLEXITY_REQUEST, CELT_SET_COMPLEXITY(x) /*0-10 (int)*/
● CELT_SET_LTP_REQUEST, CELT_SET_LTP(x) /*0 or 1 (int)*/

int celt_encode(CELTEncoder *st,const celt_int16_t *pcm,
 celt_int16_t *optional_synthesis,
 unsigned char *compressedBytes,int nbCompressedBytes);
void celt_encoder_destroy(CELTEncoder *st);

CELTDecoder *celt_decoder_create(const CELTMode *mode);
int celt_decode(CELTDecoder *st,unsigned char *compressedBytes,
 int nbCompressedBytes,celt_int16_t *pcm);
void celt_decoder_destroy(CELTDecoder *st);

void celt_mode_destroy(CELTMode *mode);

The Xiph.Org Foundation 52

Hello Encoder
#include <stdio.h>
#include <stdlib.h>
#include <celt/celt.h>

int main(int argc,const char *argv[]){
 celt_int16_t in[256];
 unsigned char out[43];
 CELTMode *mode;
 CELTEncoder *enc;
 mode=celt_mode_create(48000,1,256,NULL);
 if(mode==NULL)return EXIT_FAILURE;
 enc=celt_encoder_create(mode);
 if(enc==NULL)return EXIT_FAILURE;
 while(fread(in,sizeof(celt_int16_t),256,stdin)>=256){
 if(celt_encode(enc,in,NULL,out,43)<0)return EXIT_FAILURE;
 fwrite(out,sizeof(unsigned char),43,stdout);
 }
 celt_encoder_destroy(enc);
 celt_mode_destroy(mode);
 return EXIT_SUCCESS;
}

The Xiph.Org Foundation 53

Hello Decoder
#include <stdio.h>
#include <stdlib.h>
#include <celt/celt.h>

int main(int argc,const char *argv[]){
 unsigned char in[43];
 celt_int16_t out[256];
 CELTMode *mode;
 CELTDecoder *dec;
 celt_int32_t skip;
 mode=celt_mode_create(48000,1,256,NULL);
 if(mode==NULL)return EXIT_FAILURE;
 celt_mode_info(mode,CELT_GET_LOOKAHEAD,&skip);
 dec=celt_decoder_create(mode);
 if(dec==NULL)return EXIT_FAILURE;
 while(fread(in,sizeof(unsigned char),43,stdin)>=43){
 if(celt_decode(dec,in,43,out)<0)return EXIT_FAILURE;
 fwrite(out+skip,sizeof(celt_int16_t),256-skip,stdout);
 skip=0;
 }
 celt_decoder_destroy(dec);
 celt_mode_destroy(mode);
 return EXIT_SUCCESS;
}

The Xiph.Org Foundation 54

Outline
● Introduction
● CELT Design
● libcelt

– The API

– Low-latency Linux Audio

● Demo
● Conclusion

The Xiph.Org Foundation 55

Low-latency Linux Audio
● Audio hardware often doesn't work with small

buffer sizes
– 256 samples (5.3 ms) sometimes fails

– Even 512 samples (10.6 ms) occasionally fails

– I don't know how often this is a Linux driver problem
vs. a hardware problem, but...

● There's no easy way to tell if it will work other
than to try it and fail
– And this is Linux's problem

The Xiph.Org Foundation 56

Low-latency Linux Audio
● Even if small buffers work, scheduling delays

can prevent us from filling them on time
– Loading/unloading drivers still causes huge delays, even

with RT patches
● Hot-plugging some USB devices virtually guarantees

deadline miss

● Network latency is also critical
– Some drivers will attempt to throttle interrupts when

sending hundreds of packets a second
● This only makes latency worse

– Some wi-fi drivers have weird spikes over 100ms
(OpenMoko FreeRunner)

The Xiph.Org Foundation 57

Low-latency Linux Audio
● Library support also important

– On x86-64, glibc's exp() takes substantially longer
than average for some arguments

● Turns out it uses a generic C implementation
● Includes its own custom multi-precision arithmetic library

to compute hundreds of digits of intermediate results if
necessary so that the rounding is exactly right

– expf() is even slower than exp()
● Changes exception handling mode of FPU, even if it's

already set correctly, then changes it "back"

● Now imagine all the dependencies of a video-
conferencing app...

The Xiph.Org Foundation 58

Outline
● Introduction
● CELT Design
● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 59

Outline
● Introduction
● CELT Design
● libcelt
● Demo
● Conclusion

The Xiph.Org Foundation 60

Conclusion
● CELT brings CD-quality sound to VoIP-style

low-delay applications
– Better than MP3 and <10 ms delay

● Better than emerging proprietary standards
– As good or better than AAC-LD with half the delay

– Better quality and error robustness than ULD

– Supports wider range of bitrates, sampling rates

The Xiph.Org Foundation 61

Early Adopters
● CELT is already being used by a number of projects

– Soundjack (Alexander Carôt)
http://virtualsoundexchange.net/node/21

– NexGenVoIP (Dr. Christian Hoene)
http://www.nexgenvoip.org/

– FreeSWITCH (Anthony Minessale II, Brian K. West)
http://www.freeswitch.org/ (source code available)

– jack-audio-connection-kit (netjack) (Torben Hohn)
http://jackaudio.org/ (source code available)

– Radio CHNC (Jonathan Thibault, http://navigue.com)
http://www.radiochnc.com/

http://virtualsoundexchange.net/node/21
http://www.nexgenvoip.org/
http://www.freeswitch.org/
http://jackaudio.org/
http://navigue.com/
http://www.radiochnc.com/

The Xiph.Org Foundation 62

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

