A Full Bandwidth Audio Codec with Low Complexity and Very Low Delay

Jean-Marc Valin, Octasic Inc.
Timothy B. Terriberry, Xiph.Org Foundation
Gregory Maxwell, Juniper Networks Inc.

EUSIPCO 2009
Introduction

- Motivations for very low delay
 - Delay-sensitive applications (e.g. live network music)
 - Reduces perception of acoustic echo

- Codec characteristics
 - Speech and music at 48 kHz
 - 5.3 ms frame size (256 samples), 2.7 ms look-ahead
 - 48-128 kb/s per channel (adaptive)
 - Support for frames sizes of 64 – 512 samples
Overview

- Constrained-Energy Lapped Transform (CELT)
- Basic principles
 - MDCT spectrum divided into critical bands
 - Band energy explicitly coded, constrained at decoder
 - Spectral “details” coded with spherical codebook
 - Bit allocation based on shared information
Encoder Block Diagram

Audio \rightarrow \text{Window} \rightarrow \text{MDCT} \rightarrow \frac{z}{x} \rightarrow \text{PVQ} \rightarrow \text{Coarse energy} \rightarrow + \rightarrow \text{Fine energy} \rightarrow \text{Range coder} \rightarrow \text{Bit-stream}

- Band energy
- Desired bit-rate
- Bit allocation

 Quantizers
Transform, Bands

- **Modified Discrete Cosine Transform (MDCT)**
 - Low-overlap window
 - Divided into critical bands (except low frequencies)

- **Implications of short frame size**
 - Poor frequency resolution and leakage
 - High cost of “side information”
Energy Quantization

- Energy computed for each critical band

Coarse-fine strategy

- Coarse energy quantization
 - Scalar quantization with 6 dB fixed resolution
 - Prediction in time (previous frame) and frequency
 - Range-coded with Laplacian probability model

- Fine energy quantization
 - Variable resolution (based on bit allocation)
 - Not entropy-coded

- Any error in the energy quantization is not compensated in the later quantization stages
PVQ Codebook

- Quantizing N-dimensional vectors of unit norm
 - $N-1$ degrees of freedom (hyper-sphere)

- Pyramid Vector Quantizer [Fischer, 1986]
 - Algebraic codebook (no table stored)
 - Combinations of K signed “pulses”
 - Set of vectors y such that $\| y \|_{L1} = K$
 - Mapped onto the hyper-sphere: $x = y / \| y \|_{L2}$

- Fast search and indexing algorithms
- Index is range-coded (flat probability)
Perceptual Improvements

- Pre-echo control
 - Multiple smaller MDCTs, interleaved spectra
 - Energy computed as if a single MDCT

- “Birdie” avoidance
 - Adding an “offset” to PVQ quantization
 - Based on lower part of the spectrum
 - Gain = $N / (N + 6K)$
Bit Allocation

- Fundamentally a CBR codec (VBR supported)
- Synchronized allocator in encoder and decoder
 - Allocates fine energy bits and PVQ bits
 - Depends only on shared information
 - Number of compressed bytes
 - Number of bits used so far by the range coder
 - Near-constant bits per band in time
 - Models within-band masking with near-constant SMR
 - Does not model inter-band masking, tone vs noise
 - Implicit psycho-acoustic model (not coded)
Allocation Example (64 kb/s)
Evaluation

- **MUSHRA listening tests (10 listeners)**
 - CELT version 0.5.0 (proposed)
 - FhG ULD: warped LPC, pre-filtering
 - G.722.1C: MDCT, scalar quantization, uniform bands

<table>
<thead>
<tr>
<th>Codec</th>
<th>Sample rate kHz</th>
<th>Bitrate kbit/s</th>
<th>Frame size sample (ms)</th>
<th>Look-ahead sample (ms)</th>
<th>Total delay sample (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed (64)</td>
<td>48</td>
<td>64</td>
<td>256 (5.3)</td>
<td>128 (2.7)</td>
<td>384 (8)</td>
</tr>
<tr>
<td>Proposed (96)</td>
<td>48</td>
<td>96</td>
<td>128 (2.7)</td>
<td>64 (1.3)</td>
<td>192 (4)</td>
</tr>
<tr>
<td>ULD</td>
<td>48</td>
<td>96</td>
<td>128 (2.7)</td>
<td>128 (2.7)</td>
<td>256 (5.3)</td>
</tr>
<tr>
<td>G.722.1C</td>
<td>32</td>
<td>48</td>
<td>640 (20)</td>
<td>640 (20)</td>
<td>1280 (40)</td>
</tr>
</tbody>
</table>
Complexity and RAM

- Complexity (encoder+decoder average)
 - 17 WMOPS in fixed-point
 - 27 MHz on Intel Core2 (unoptimised floating-point C)

- State data (per channel)
 - Encoder: 0.5 kB
 - Decoder: 0.5 kB (+ 4 kB for PLC)

- Scratch space
 - Encoder+decoder: ~7 kB
• Conclusion

 • Low-delay coded, explicit energy constraint
 • Work in progress
 • Pitch prediction
 • Stereo coupling
 • Submitted to IETF as Internet codec proposal
 • Resources
 • Source code: http://www.celt-codec.org
 • Mailing list: celt-dev@xiph.org
Questions?

Ask me for audio samples after the session
Other Frame Sizes

Overhead is about 42 bits/frame